Value and Valuation of Health Technologies 'Developing a Swiss Consensus' 5-6 November 2010, Zurich

How do we translate individual preferences into social preferences?

Professor Jeff Richardson
Foundation Director, Centre for Health Economics
Monash University

http://www.buseco.monash.edu.au/centres/che/

Content

- A. The problem: Individual <u>vs</u> social preferences
- B. Theory: Aggregation
- c. Redefining the task: What is achievable
- D. Policy: What we should do

A. The Problem

The Context: National health scheme

Social insurance scheme

"NHS"

The Task: Achieve social goals

NOT

Replicate the market

Market <u>vs</u> Social Allocation

Market

Resources (opportunity) Costs

<u>vs</u>

Individual Benefits (utility)

Social Problem Collective Generosity

<u>vs</u>

Social Benefits

Related to – not identical with – individual benefits

Related to – not identical with – resource cost

Market <u>vs</u> Social Allocation

Market

Resources (opportunity) Costs

<u>vs</u>

Individual Benefits (utility)

Social Problem

Related to –
not identical
with –
resource cost

Collective

Social Benefits

Focus

of talk

Related to – not identical with – individual benefits

B. Theory

Problems measuring social benefits

- a) Measurement benefits of sharing, solidarity, etc
- b) Combining individual benefits: winners and losers

Focus
of Section B, C
Theory

Winners, Losers

Criterion	Distributive effects	
	Relatively Advantaged group	Relatively Disadvantaged group
Equal access for equal need	Poor access	Good access
Severity (need)	High CE	Low CE
Cost/Life	Short life expectancy	Long life expectancy
Cost/Life Year	Low QoL	High QoL
Cost/QALY	Low cost Responsive illness	High cost Unresponsive illness
Cost/(QALY, severity)	Severe Low CE illness	Less severe High CE illness
Cost/QALY*age weight	Young	Old
Cost (unit of capabilities)	Capabilities responsive High CE	Capabilities unresponsive Low CE
Cost/unit happiness	High CE High Happiness	Low CE High Happiness
Willingness to Pay	Wealthy	Less wealthy
Universal Sharing per se	High CE	Low CE

Combining Winners, Losers

Orthodox Economics

First Approach

Social welfare function

 $W = W[U_1 \dots U_n, Other]$

... Adds gravitas to:

'We don't know the answer'

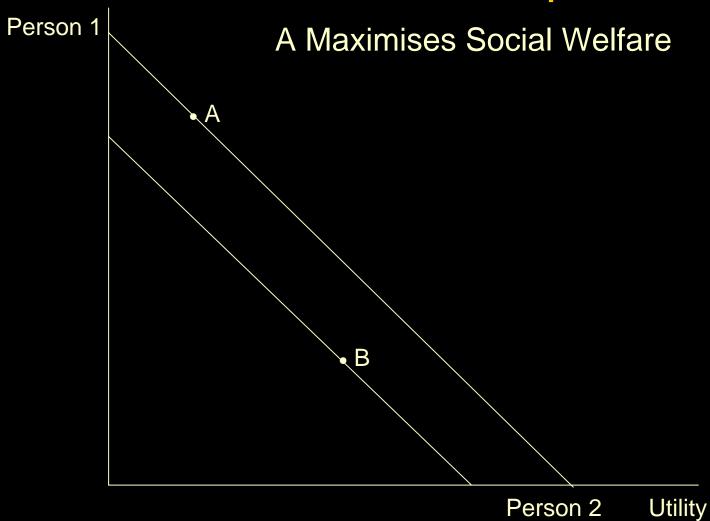
- Samuelson Bergson

Social welfare function

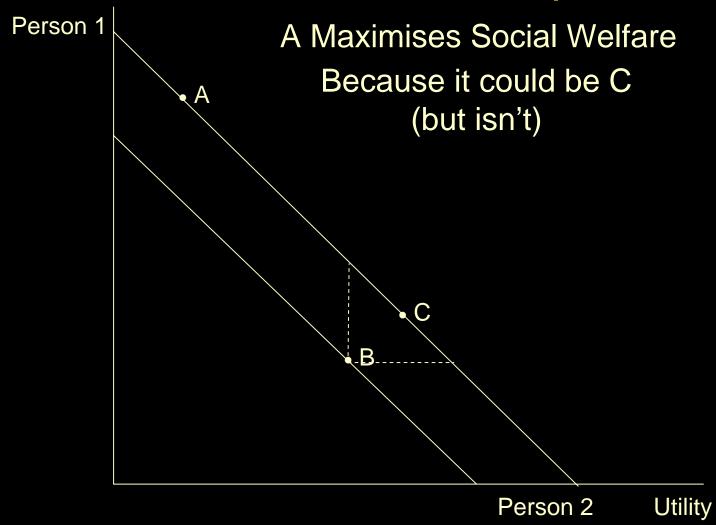
$$W = W(U_1 \dots U_n)$$

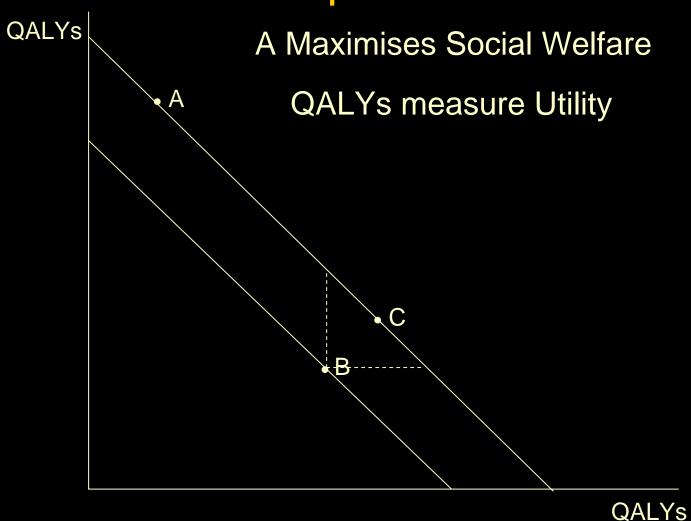
... Welfarism

... wrong


Second Approach

Potential Pareto efficiency (Kaldor Hicks)


Situation 'X' is better if there is the potential to compensate the loser and 1+ person is better off.


Life is simple

Life is simple

Life is simple: The health sector

Conclude: Maximise QALYs

Conclusion

 Welfare theory provides no satisfactory method for combining winners/losers

Arrow's voting paradox

'There is no technically correct way of combining preferences given reasonable rules'

Condorcet 1785

Preferences

Person A X > Y > Z

Person B Y > Z > X

Person C Z > X > Y

Arrow's voting paradox

'There is no technically correct way of combining preferences given reasonable rules'

Condorcet 1875

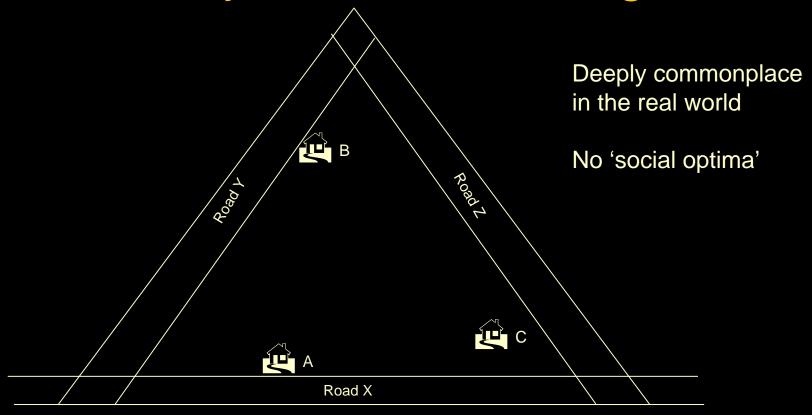
Preferences

Person A X > Y > Z

Person B Y > Z > X

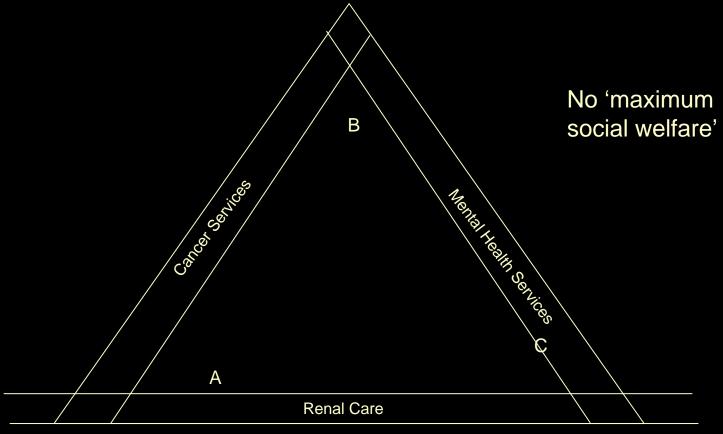
Person C Z > X > Y

Voting


 $X \vee S Y \qquad X > Y$

Y vs Z Y > Z implies X > Z

But X vs ZZ > X deeply profound in world of intellectual games



Daily decision making

Preference for road improvement		Voting
Person A	X > Y > Z	$X \text{ vs } Y \rightarrow x$
Person B	Y > Z > X	$Y \text{ vs } Z \rightarrow Y$
Person C	Z > X > Y	$X \text{ vs } Z \rightarrow Z$

Allocation of medical resources

Need		Voting
Person A	Renal > Cancer > Mental Health	Renal vs Cancer → Renal
Person B	Cancer > Mental Health > Renal	Cancer vs Mental Health → Cancer
Person C	Mental Health > Renal > Cancer	Mental Health vs Renal → Mental Health

Key Conclusion

- 'Social Optima' may not exist
- Decisions require additional non technical judgements

It isn't a paradox

- It isn't a paradox
- With 1 criterion ... Concept of transivity OK ...
 eg Maximise income
- Unambiguous ranking possible

- It isn't a paradox
- With 1 criterion ... Concept of transivity OK ... eg Maximise income
- Unambiguous ranking possible
- With 2+ criteria ... Concept of transivity unhelpful ...
 Criteria may clash

- It isn't a paradox
- With 1 criterion ... Concept of transivity OK ... eg Maximise income
- Unambiguous ranking possible
- With 2+ criteria ... Concept of transivity unhelpful ... Criteria may clash
 - eg Majority voting and transivity
 - eg Sen 'Impossibility of a Pareto Liberal'
 - eg Food ... healthy, tasty, cheap
 - Government ... intelligent, moral, courageous

- It isn't a paradox
- With 1 criterion ... Concept of transivity OK ... eg Maximise income
- Unambiguous ranking possible
- With 2+ criteria ... Concept of transivity unhelpful ... Criteria may clash
 - eg Majority voting and transivity
 - eg Sen 'Impossibility of a Pareto Liberal'
 - eg Food ... healthy, tasty, cheap Government ... intelligent, moral, courageous
- Health: Multiple criteria

Meaning of 'Social Value'

Multiple criteria means

'Social Optima'

Potentially non existent

'Social Value' vague
 Like 'beauty', 'justice', etc

Vagueness ≠ meaninglessness
This is beautiful ...
This is unjust ...

'Social value' = something potentially broader than individual values

Relevance for health

- 1 Criterion cost/QALY unambiguous ranking possible
- 2+ Criteria cost/QALY + distributive + procedural fairness unambiguous ranking not possible

Conclusion for health

 Multiple criteria implies no technical solution

Ethics as a Solution

(Use of logical argument)

'Straw ethics'

- Principle X should be adopted ...
- Utilitarianism: because ...
- Capabilities: because ...

Plato's critique (the 'Parmenides')

- Judgement requires a criterion why this criterion requires a meta criterion why this meta criterion
- Oh dear, what can the meta be? There is an infinite regress

Hume's critique

"is" \→ ought

C. Re-defining the task

Progress to date

Social welfare function

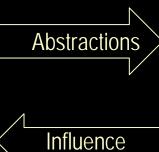
...

- Potential Pareto improvement
- **\rightarrow** ?

Ethics

- **?**
- Arrow → Rational choice Impossible but choice is commonplace

WHY



Karl Popper's Three Worlds

World 1 Subjective experience

World 2 'Real'/Physical world

Specific objects, events, people Institutions Rigidities

World 3 Theories, ideals, ideas

Plato's forms
Ideal worlds
Mathematics
Ethical theories
Welfare Theory

Characterised by

Complexity
Tentative hypothesis
Historical behaviours
Incremental change,
compromise

Characterised by

Simplicity
Certainty
Ideal behaviours
Best solutions/
maxima

'Connecting' World 3

Physical sciences ... Unexpected Prediction anti matter/particle entanglement

→ (tentative) best theory:
it works in World 2

Welfare economics

*\frac{1}{2} testable prediction

← assumptions

Assumptions ← World 3

oversimplified never proven

some wrong

- connection World 2 never satisfactorily made

Conjecture

- Health economics has not satisfactorily connected World 2, World 3
- This is not recognised by those advocating 'theoretically correct solutions'

Alternative frameworks for Welfare/Evaluation Analysis

- 1. Map 'World 3' → World 2
 - no test
 - theoretically impossible if multiple criteria (AIT)
- Examine relationships in World 2
 - positive not normative analysis
- 3. Suggest World 3 Ethical Theories
 - *normative*/rhetorical
 - no authority, only a suggestion

D. Policy

Empirical Ethics as a suggestion

- a) Positive analysis of welfare related questions
 - Data for decision making: See Lecture 1
- b) Normative suggestion:
 - Subject to caveats accept majority decision making

(a) Positive Empirical Ethics

- 1. Iterative elicitation of values hypothesis generation, clarification
- Quantification of social (value) preferences deliberation
- 3. Ethics critique, ie testing
- 4. Resubmit for reconsideration, reformulation

(b) Normative Empirical Ethics

- Key suggestion for debate/modification
 - Accept population values subject to caveats
 - Launder abhorrent values
 - Protect minority rights
 - Consideration for exceptions

Likely allocation principles

- Sharing across patients
 ...every category of patient treated
- 2. Minimum services mandatory ...incremental services optional
- 3. Principles governing incrementalism
 - outline specific
 - = f(Strength of sharing, cost, prioritising principles)

Sharing ≠ arbitrary allocation

Algorithms outperform full discretion

Policy example 1: A flexible threshold

Focus: The Procedure

Web based allocation exercise

The diagram below represents 4 patients and the age when they will die which is shown in red Click on the box where you think Medicare should spend \$10,000

12 yrs 12 yrs 12 yrs 12 yrs 8 yrs 8 yrs 8 yrs 8 yrs 8 yrs 8 yrs 6 yrs 4 yrs

Policy example 1: A flexible threshold

Focus: The Procedure

In ρ /(1-p) = a - b₁ cost/QALY + b₂ Severity + b₃ Character + b₄ Share + b₅ budget

if
$$\rho = \frac{1}{2}$$

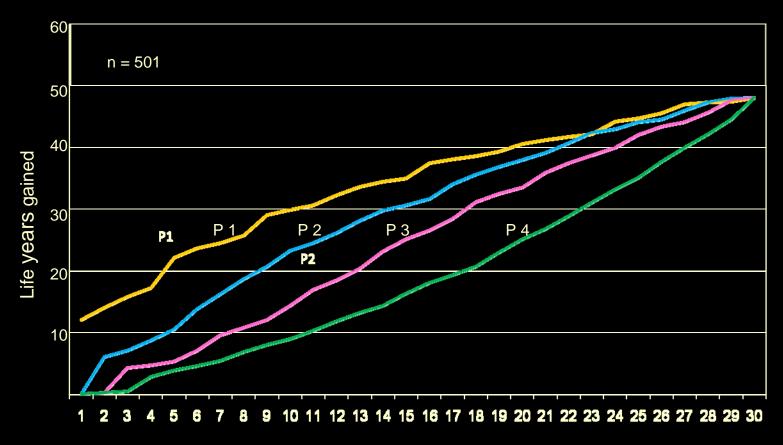
 $0 = a - b_1 \cos t + b_2 \text{ Severity} + b_3 \text{ Character} + b_4 \text{ Share} + b_5 \text{ budget}$

Policy example 1: A flexible threshold

Focus: The Procedure

In ρ /(1-p) = a - b₁ cost/QALY + b₂ Severity + b₃ Character + b₄ Share + b₅ budget

if
$$\rho = \frac{1}{2}$$


 $0 = a - b_1 \cos t + b_2 \text{ Severity} + b_3 \text{ Character} + b_4 \text{ Share} + b_5 \text{ budget}$

Threshold

cost/QALY = f(Budget, Sharing, Severity, Characteristics)

Policy Example 2: Sharing the Budget by Group

Budget (1 unit = \$10,000)

Policy Example 2: Sharing the budget Individual Groups

Diagnostic Group 1 = b_{11} Budget + b_{12} Cost/LY + b_{13} Other

Diagnostic Group 2 " " "

Diagnostic Group 3 "

Diagnostic Group $n = b_{n1}$ Budget + b_{n2} Cost/LY + b_{n3} Other

Unanswered health sector questions for empirical investigation

- 1. What are the public's broad goals
 - Individual preference maximisation utility in part
 - Individual happiness in part
 - Capabilities ... ??
 - Health maximisation no
 - Health sharing ... Yes
 - Priority for severity ... Yes
- 2. How do we trade-off these goals*
- 3. Who should make social decisions: parliament; statutory authority
 - Services to include therapies/diagnostic groups: budget share
 - Who is trusted (not politicians, not economists)
- 4. Should individuals or expert opinion count
 - mix = primarily expert

Huge scope for empirical analysis of public values

Implementation

Whatever voting process exists should be used

WHY?

There is no alternative in World 2

Suggestions for reform of governance

- Semi autonomous authority (federal or sub federal level)
 - Determines broad principle (eg Sharing; role of cost ...)
 - Establishes boards for specific decisions eg services/drugs on NHS
 - Membership = doctors, administrators, economists, consumer representatives (seek)

Role of social scientist

Quantification of population values - advisor NOT

Philosopher King

Institutional Implication

- 'Optimal' decisions
- reflect social values,
- − ≠ technical solutions
- Governance reflects desired level of local autonomy

- 'Social Welfare'
 - = shorthand label
 - = not (only) individual preferences
 - ≠ uni-dimensional clear construct

- "Social Welfare"
 - = shorthand label
 - = not (only) individual preferences
 - ≠ uni-dimensional clear construct
- Health sector
 - NHS created for social reasons
 - requires social decision making by (modified) institutions

- "Social Welfare"
 - = shorthand label
 - = not (only) individual preferences
 - ≠ uni-dimensional clear construct
- Health sector
 - NHS created for social reasons
 - requires social decision making by (modified) institutions
- Technically correct approaches do not exist
 - Min cost/QALY not 'technically correct'

- "Social Welfare"
 - = shorthand label
 - = not (only) individual preferences
 - ≠ uni-dimensional clear construct
- Health sector
 - NHS created for social reasons
 - requires social decision making by (modified) institutions
- Technically correct approaches do not exist
 - Min cost/QALY not 'technically correct'
- Empirical Ethics indicates
 - Overwhelming importance ... sharing, fairness
 - Underwhelming importance ... Efficiency

- "Social Welfare"
 - = shorthand label
 - = not (only) individual preferences
 - ≠ uni-dimensional clear construct
- Health sector
 - NHS created for social reasons
 - requires social decision making by (modified) institutions
- Technically correct approaches do not exist
 - Min cost/QALY not 'technically correct'
- Empirical Ethics indicates
 - Overwhelming importance ... sharing, fairness
 - Underwhelming importance ... efficiency
- Decision making should vary with social values

